時間:2022-07-20 13:50:06
開篇:寫作不僅是一種記錄,更是一種創造,它讓我們能夠捕捉那些稍縱即逝的靈感,將它們永久地定格在紙上。下面是小編精心整理的12篇解一元一次方程教案,希望這些內容能成為您創作過程中的良師益友,陪伴您不斷探索和進步。
教學目的
1.使學生會進行簡單的公式變形。
教學分析
重點:含字母系數的一元一次方程的解法。
難點:含字母系數的一元一次方程的解法及公式變形。
教學過程
一、復習
1.試述一元一次方程的意義及解一元一次方程的步驟。
2.什么叫分式?分式有意義的條件是什么?
二、新授
1.公式變形
引例:汽車的行駛速度是v(千米/小時),行駛的時間是t(小時),那么汽車行駛的路程s(千米)可用公式
s=vt①
來計算。
有時已知行駛的路程s與行駛的速度v(v≠0),要求行駛的時間t。因為v≠0,所以
t=。②
這就是已知行駛的路程和速度,求行駛的時間的公式。
類似地,如果已知s,t(t≠0),求v,可以得到
v=。③
公式②,③有時也可分別寫成t=sv-1;v=st-1。
以上的公式①,②,③都表示路程s,時間t,速度v之間的關系。當v、t都不等于零時,可以把公式①變換成公式②或③。
像上面這樣,把一個公式從一種形式變換成另一種形式,叫做公式變形,公式變形往往就是解含有字母系數的方程。
例3在v=v0+at中,已知v、v0、a且a≠0。求t。
解:移項,得v-v0=at。
因為a≠0,方程兩邊都除以a,得。
例4在梯形面積公式S=中,已知S、b、h且h≠0,求a。
解:去分母,得2S=(a+b)h,ah=2S-bh
因為h≠0,議程兩邊都除以h,得
。
三、練習
P92中練習1,2,3。
四、小結
公式變形的實質是解含字母系數的方程,要求的字母是未知數,其余的字母均是字母已知數。如例3就是把v、v0、a當作字母已知數,把t當作未知數,解關于t的方程。
五、作業作業:P93中習題9.5A組7,8,9。
另:需要注意的幾個問題
一、學前準備
“學案”的環節之一為“學前準備”,我們鼓勵學生利用課余時間預習。為了提高學生課前預習的有效性和積極性,在預習階段要求學生對新知識作初步的了解,所以設置的預習題以基礎為主,實現低層次目標的自達。保證所有同學能自行解決“學案”中的學前準備內容,對難以解決的問題做好標記,以便在課堂上向老師和同學質疑。對這一環節中的預習題,我根據數學學科的特點是這樣設計的:
案例:設計人教版七年級數學下冊“8.3實際問題與二元一次方程組”這一節內容的學前準備:
1.(1)用代入消元法解方程組
(2)加減消元法解方程組
2.有甲、乙兩個數,甲數與乙數的和為50,甲數的2倍與乙數的7倍和為250,按下列要求,求甲、乙兩個數:(1)列一元一次方程解決問題?。?)嘗試用二元一次方程組解決問題吧!
回顧用一元一次方程解決問題的步驟:
3.有甲、乙兩個數,其中2個甲數與3個乙數的和為130,甲數的2倍與乙數的7倍和為250,求甲、乙兩個數。
(一)舊知識的回顧
在學生接受新知之前,考察學生是否具備了與新知有關的知識與技能,縮短新舊知識之間的距離。案例中的第1題分別用代入消元法和加減消元法解方程組,此題設計目的是鞏固學生正確、熟練解二元一次方程組,為解決新知扎實基礎。第2題中(1)列一元一次方程解決問題,讓學生回顧用一元一次方程解決問題的步驟,從而為學元一次方程組解決問題提供類比思想。
(二)新知識的簡單嘗試
為了使學生盡可能在課堂40分鐘內把所學的知識全部掌握,我們就根據教材內容,設計難度較低,并通過預習就能獨立解決的一些練習題。案例中第2題的第(2)小題,讓學生嘗試列二元一次方程組解決問題。
第3題(巧妙變式第2題)通過與剛才第2題的對比,讓學生思考,對于本題選擇“一元一次方程解決問題”與“二元一次方程組解決問題”哪個更方便,讓學生感到學這節課的必要性。通常我們老師設計一節課,比較注重 “我怎么教”,而對于“我為什么要教這節課”和“學生在這節課中學到了什么”思考相對較少,所以我認為在“學案”四個環節的作業設計中,都應該注意這三個問題。上課前教師收齊“學案”,批閱“學前準備”這一部分的內容,然后對“學案”再次進行補充完善,以學定教。在課上有針對性地點撥,課堂效率就提高了。
二、課堂探究
學生理解和掌握的知識是要通過訓練去強化,通過運用去鞏固和提高的,這樣才能內化為學生的素質,形成學習能力。所以,我認為課堂研討部分的練習設計應注意適度和適量。
(一)要注重課內例題的基礎性、典型性、坡度性
例題的設計和選擇要體現基礎性、典型性、坡度性。例題主要采用書上的例題,但采用之前必須進行適當改變,哪怕改變計算題中的一個數字或幾何證明中的一個字母(防止少數學生在自學時不動腦筋的抄,而是必須自學看懂書上例題,再做“學案”上的預習題目);呈現方式上一題多變,利用書上的例題進行變式、挖掘和提高,從深度和廣度上來挖掘例題的作用。同時幾個例題要步步為營,步步深入,有一定的坡度性。還是以“一次方程組的應用”這內容為例,在第二節課設計例題時,可以把例題2的結論進行適當變式,因為對于“用直接未知量來設二元一次方程組解決問題”在第1節課中學生已經掌握很好,不妨通過變式呈現一個“用間接未知量來設二元一次方程組解決問題”的題目,從而提高學生解決此類問題的能力。
(二)課堂練習要適量
課堂作業是課堂教學中的再次反饋活動,要給學生充分的時間思考。所以課堂作業練習要適量,保證課堂作業當堂完成。在學生進行課內作業時,教師應巡視,掌握典型錯誤,當堂反饋糾正。要重視學生作業的規范性、合理性和獨創性。對學生在預習導學作業中或課堂研討練習中出現的問題和獨到見解,應及時講評和反饋,對教學進行適時調控。當然對“學有余力”的學生可引導他們做“延伸拓展”中的二、三星級提高題。如有疑難,教師可引導學生進行分組探討與評議,讓學生兩人一組或前后相鄰兩桌同學合作學習,相互討論,相互解答,教師以平等的身份參與這些小組學習討論,適時給予學生點撥或幫助,重點對差生、優生施以個別教學輔導,激勵和強化中等生,從而逐步解決教學過程中差生轉化和優等生的發展問題。
三、延伸拓展
(一)精選練習題
精選練習題,我在題目的選擇時,做到與教學內容配套,合適梯度,由易到難,堅持以訓練基本功、基本思路和方法為主,基本練習與綜合練習相結合,為了達到這個目標,事先對題目進行認真的分析:解題時需要用到哪些新授數學概念、定理及知識點;解題所涉及的方法和技巧;以及學生在這方面訓練的熟練程度;解題過程的關鍵處和易錯處都了然于胸。
(二)自編練習題
試題都是源于書本,只是命題人在題設條件、問題的情境和設問方式上作了適當的變換,中考題就是把平時練習中的題目通過給出新的情景、改變設問方式、互換條件與結論等手段改編而成。這樣的試題給人一種似曾相識而又似是而非的感覺,很多學生由于思維定勢造成失分,此時應變能力至關重要。因而我們在平時作業中,有意識地對一些可以改編的問題進行變式訓練、題組訓練,讓學生進一步掌握這類問題的本質及其通性通法,同時有意識進行一題多解,培養學生發散思維能力,豐富教學內容。
(三)設計層次性作業,讓學生體驗成功
數學新課標指出,由于學生所處的文化環境、家庭背境和自身思維方式的不同,學生的數學學習活動應當是一個生動活潑和富有個性的過程。因此,學生之間的數學能力存在著差異。為了實現“不同的人在數學上得到不同的發展”,設計作業時,不能搞“一刀切”,而應從學生的實際出發,設計層次性作業,為不同發展水平的學生創設練習和提高的平臺,讓學生在實踐中體驗成功。
(1)難度的分層
根據學生實際,分層設計作業,讓不同水平的學生自主選擇,給學生作業的“彈性權”,實現“人人能練習,人人能成功”,讓學生學有所得,練有所獲。當然,每個學生的學習接受的能力是不同的,為防止差生“吃不了”、優生“吃不飽”的現象,所以我們根據學生的不同層次,把作業設為必做題,選做題甚至滲透競賽的題目,讓學有余力的同學完成。
(2)數量的分層
學生可以根據自己的實際,能做幾道題就做幾道題,教師不作“硬性”規定(當然老師心里有一個譜),設計的作業太多或太難就會讓學生失去對數學練習的興趣,教師逼急了,他一抄了之,應付一下。特別是學習有困難的學生,一般情況下,他們做練習的速度可能由于基礎或者習慣方面的原因會很慢,如果數學題目的容量經常多得無法完成,就容易滋長“債欠多了不愁”的心理。
一、素質教育目標
(一)知識教學點:能靈活運用直接開平方法、配方法、公式法及因式分解法解一元二次方程.能夠根據一元二次方程的結構特點,靈活擇其簡單的方法.
(二)能力訓練點:通過比較、分析、綜合,培養學生分析問題解決問題的能力.
(三)德育滲透點:通過知識之間的相互聯系,培養學生用聯系和發展的眼光分析問題,解決問題,樹立轉化的思想方法.
二、教學重點、難點和疑點
1.教學重點:熟練掌握用公式法解一元二次方程.
2.教學難點:用配方法解一元二次方程.
3.教學疑點:對“選擇恰當的方法解一元二次方程”中“恰當”二字的理解.
三、教學步驟
(一)明確目標
解一元二次方程有四種方法,四種方法各有千秋,究竟選擇什么方法最適當是本節課的目標.在熟練掌握各種方法的前提下,以針對一元二次方程的特點選擇恰當的方法或者說是用簡單的方法解一元二次方程是本節課的目的.
(二)整體感知
一元二次方程是通過直接開平方法及因式分解法將方程進行轉化,達到降次的目的.這種轉化的思想方法是將高次方程低次化經常采取的.是解高次方程中的重要的思想方法.
在一元二次方程的解法中,平方根的概念為直接開平方法的引入奠定了基礎,符合形如(ax+b)2=c(a,b,c常數,a≠0,c≥0)結構特點的方程均適合用直接開平方法.直接開平方法為配方法奠定了基礎,利用配方法可推導出一元二次方程的求根公式.配方法和公式法都是解一元二次方程的通法.后者較前者簡單.但沒有配方法就沒有公式法.公式法是解一元二次方程最常用的方法.因式分解的方法是獨立的一種方法.它和前三種方法沒有任何聯系,但蘊含的基本思想和直接開平方法一樣,即由高次向低次轉化的一種基本思想方法.方程的左邊易分解,而右邊為零的題目,均用因式分解法較簡單.
(三)重點、難點的學習與目標完成過程
1.復習提問
(1)將下列方程化成一元二次方程的一般形式,并指出二次項系數,一次項系數及常數項.
(1)3x2=x+4;
(2)(2x+1)(4x-2)=(2x-1)2+2;
(3)(x+3)(x-4)=-6;
(4)(x+1)2-2(x-1)=6x-5.
此組練習盡量讓學生眼看、心算、口答,使學生練習眼、心、口的配合.
(2)解一元二次方程都學過哪些方法?說明這幾種方法的聯系及其特點.
直接開平方法:適合于解形如(ax+b)2=c(a、b、c為常數,a≠0c≥0)的方程,是配方法的基礎.
配方法:是解一元二次方程的通法,是公式法的基礎,沒有配方法就沒有公式法.
公式法:是解一元二次方程的通法,較配方法簡單,是解一元二次方程最常用的方法.
因式分解法:是最簡單的解一元二次方程的方法,但只適用于左邊易分解而右邊是零的一元二次方程.
直接開平方法與因式分解法都蘊含著由高次向低次轉化的思想方法.
2.練習1.用直接開平方法解方程.
(1)(x-5)2=36;(2)(x-a)2=(a+b)2;
此組練習,學生板演、筆答、評價.切忌不要犯如下錯誤
①不是x-a=a+b而是x-a=±(a+b);
練習2.用配方法解方程.
(1)x2-10x-11=0;(2)ax2+bx+c=0(a≠0)
配方法是解決代數問題的一大方法,用此法解方程盡管有點麻煩,但由此法推導出的求根公式,則是解一元二次方程最通用也是最常用的方法.
此練習的第2題注意以下兩點:
(1)求解過程的嚴密性和嚴謹性.
(2)需分b2-4ac≥0及b2-4ac<0的兩種情況的討論.
此2題學生板演、練習、評價,教師引導,滲透.
練習3.用公式法解一元二次方程
練習4.用因式分解法解一元二次方程
(1)x2-3x+2=0;(2)3x(x-1)+2x=2;
解(2)原方程可變形為3x(x-1)+2(x-1)=0,
(x-1)(3x+2)=0,
x-1=0或3x+2=0.
如果將括號展開,重新整理,再用因式分解法則比較麻煩.
練習5.x取什么數時,3x2+6x-8的值和2x2-1的值相等.
解:由題意得3x2+6x-8=2x2-1.
變形為x2+6x-7=0.
(x+7)(x-1)=0.
x+7=0或x-1=0.
即x1=-7,x2=1.
當x=-7,x=1時,3x2+6x-8的值和2x2-1的值相等.
學生筆答、板演、評價,教師引導,強調書寫步驟.
練習6.選擇恰當的方法解下列方程
(1)選擇直接開平方法比較簡單,但也可以選用因式分解法.
(2)選擇因式分解法較簡單.
學生筆答、板演、老師滲透,點撥.
(四)總結、擴展
(1)在一元二次方程的解法中,公式法是最主要的,最通用的方法.因式分解法對解某些一元二次方程是最簡單的方法.在解一元二次方程時,應據方程的結構特點,選擇恰當的方法去解.
(2)直接開平方法與因式分解法中都蘊含著由二次方程向一次方程轉化的思想方法.由高次方程向低次方程的轉化是解高次方程的思想方法.
四、布置作業
1.教材P.21中B1、2.
2.解關于x的方程.
(1)x2-2ax+a2-b2=0,
(2)x2+2(p-q)x-4pq=0.
4.(1)解方程
①(3x+2)2=3(x+2);
(2)方程(m2-3m+2)x2+(m-2)x+7=0,m為何值時①是一元二次方程;②是一元一次方程.
五、板書設計
12.2用因式分解法解一元二次方程(二)
四種方法練習1……練習2……
1.直接開平方法…………
2.配方法
3.公式法
4.因式分解法
六、作業參考答案
1.教材P.2B.1(1)x1=0,x2=;(2)x1=,x2=;
2:1秒
2.(1)解:原方程可變形為[x-(a+b)][x-(a-b)]=0.
x-(a+b)=0或x-(a-b)=0.
即x1=a+b,x2=a-b.
(2)解:原方程可變形為(x+2p)(x-2q)=0.
x+2p=0或x-2q=0.
即x1=-2p,x2=2q.
原方程可化為5x2+54x-107=0.
(2)解①m2-3m+2≠0..
m1≠1,m2≠2.
當m1≠1且m2≠2時,此方程是一元二次方程.
一、素質教育目標
(一)知識教學點:1.使學生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識別二次項系數、一次項系數及常數項.
(二)能力訓練點:1.通過一元二次方程的引入,培養學生分析問題和解決問題的能力;2.通過一元二次方程概念的學習,培養學生對概念理解的完整性和深刻性.
(三)德育滲透點:由知識來源于實際,樹立轉化的思想,由設未知數列方程向學生滲透方程的思想方法,由此培養學生用數學的意識.
二、教學重點、難點
1.教學重點:一元二次方程的意義及一般形式.
2.教學難點:正確識別一般式中的“項”及“系數”.
三、教學步驟
(一)明確目標
1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學生拿出事先準備好的長方形紙片和剪刀,實際操作一下剛才演示的過程.學生的實際操作,為解決下面的問題奠定基礎,同時培養學生手、腦、眼并用的能力.
2.現有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應該怎樣求出截去的小正方形的邊長?
教師啟發學生設未知數、列方程,經整理得到方程x2-70x+825=0,此方程不會解,說明所學知識不夠用,需要學習新的知識,學了本章的知識,就可以解這個方程,從而解決上述問題.
板書:“第十二章一元二次方程”.教師恰當的語言,激發學生的求知欲和學習興趣.
(二)整體感知
通過章前引例和節前引例,使學生真正認識到知識來源于實際,并且又為實際服務,學習了一元二次方程的知識,可以解決許多實際問題,真正體會學習數學的意義;產生用數學的意識,調動學生積極主動參與數學活動中.同時讓學生感到一元二次方程的解法在本章中處于非常重要的地位.
(三)重點、難點的學習及目標完成過程
1.復習提問
(1)什么叫做方程?曾學過哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含義?
(3)什么叫做分式方程?
問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊.
2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應怎樣剪?
引導,啟發學生設未知數列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.
整式方程:方程的兩邊都是關于未知數的整式,這樣的方程稱為整式方程.
一元二次方程:只含有一個未知數,且未知數的最高次數是2,這樣的整式方程叫做一元二次方程.
一元二次方程的概念是在整式方程的前提下定義的.一元二次方程中的“一元”指的是“只含有一個未知數”,“二次”指的是“未知數的最高次數是2”.“元”和“次”的概念搞清楚則給定義一元三次方程等打下基礎.一元二次方程的定義是指方程進行合并同類項整理后而言的.這實際上是給出要判定方程是一元二次方程的步驟:首先要進行合并同類項整理,再按定義進行判斷.
3.練習:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
(4)6x2=x;
(5)2x2=5y;
(6)-x2=0
4.任何一個一元二次方程都可以化為一個固定的形式,這個形式就是一元二次方程的一般形式.
一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2稱二次項,bx稱一次項,c稱常數項,a稱二次項系數,b稱一次項系數.
一般式中的“a≠0”為什么?如果a=0,則ax2+bx+c=0就不是一元二次方程,由此加深對一元二次方程的概念的理解.
5.例1把方程3x(x-1)=2(x+1)+8化成一般形式,并寫出二次項系數,一次項系數及常數項?
教師邊提問邊引導,板書并規范步驟,深刻理解一元二次方程及一元二次方程的一般形式.
6.練習1:教材P.5中1,2.要求多數學生在練習本上筆答,部分學生板書,師生評價.題目答案不唯一,最好二次項系數化為正數.
練習2:下列關于x的方程是否是一元二次方程?為什么?若是一元二次方程,請分別指出其二次項系數、一次項系數、常數項.
8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.
教師提問及恰當的引導,對學生回答給出評價,通過此組練習,加強對概念的理解和深化.
(四)總結、擴展
引導學生從下面三方面進行小結.從方法上學到了什么方法?從知識內容上學到了什么內容?分清楚概念的區別和聯系?
1.將實際問題用設未知數列方程轉化為數學問題,體會知識來源于實際以及轉化為方程的思想方法.
2.整式方程概念、一元二次方程的概念以及它的一般形式,二次項系數、一次項系數及常數項.歸納所學過的整式方程.
3.一元二次方程的意義與一般形式ax2+bx+c=0(a≠0)的區別和聯系.強調“a≠0”這個條件有長遠的重要意義.
四、布置作業
1.教材P.6練習2.
2.思考題:
1)能不能說“關于x的整式方程中,含有x2項的方程叫做一元二次方程?”
2)試說出一元三次方程,一元四次方程的定義及一般形式(學有余力的學生思考).
五、板書設計
第十二章一元二次方程12.1用公式解一元二次方程
1.整式方程:……4.例1:……
2.一元二次方程……:……
3.一元二次方程的一般形式:
……5.練習:……
…………
六、課后習題參考答案
教材P.6A2.
教材P.6B1、2.
1.(1)二次項系數:ab一次項系數:c常數項:d.
(2)二次項系數:m-n一次項系數:0常數項:m+n.
2.一般形式:(m+n)x2+(m-n)x+p-q=0(m+n≠0)二次項系數:m+n,一次項系數:m-n,常數項:p-q.
思考題
(1)不能.如x3+2x2-4x=5.
虛假的學問比無知更糟糕。無知好比一塊空地,可以耕耘和播種;虛假的學問就象一塊長滿雜草的荒地,幾乎無法把草拔盡。就像不扎實的數學基礎。下面就是小編為大家梳理歸納的內容,希望能夠幫助到大家。
2020北師大九年級下冊數學教案:正弦和余弦一、素質教育目標
(一)知識教學點
使學生知道當直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實.
(二)能力訓練點
逐步培養學生會觀察、比較、分析、概括等邏輯思維能力.
(三)德育滲透點
引導學生探索、發現,以培養學生獨立思考、勇于創新的精神和良好的學習習慣.
二、教學重點、難點
1.重點:使學生知道當銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實.
2.難點:學生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關鍵在于教師引導學生比較、分析,得出結論.
三、教學步驟
(一)明確目標
1.如圖6-1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?
2.長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?
3.若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?
4.若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?
前兩個問題學生很容易回答.這兩個問題的設計主要是引起學生的回憶,并使學生意識到,本章要用到這些知識.但后兩個問題的設計卻使學生感到疑惑,這對初三年級這些好奇、好勝的學生來說,起到激起學生的學習興趣的作用.同時使學生對本章所要學習的內容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關直角三角形的其他未知邊角就可用學過的知識全部求出來.
通過四個例子引出課題.
(二)整體感知
1.請每一位同學拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值.
學生很快便會回答結果:無論三角尺大小如何,其比值是一個固定的值.程度較好的學生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長.
2.請同學畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學生又高興地發現,不論三角形大小如何,所求的比值是固定的.大部分學生可能會想到,當銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?
這樣做,在培養學生動手能力的同時,也使學生對本節課要研究的知識有了整體感知,喚起學生的求知欲,大膽地探索新知.
(三)重點、難點的學習與目標完成過程
1.通過動手實驗,學生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個命題呢?學生這時的思維很活躍.對于這個問題,部分學生可能能解決它.因此教師此時應讓學生展開討論,獨立完成.
2.學生經過研究,也許能解決這個問題.若不能解決,教師可適當引導:
若一組直角三角形有一個銳角相等,可以把其
頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學們能解決這個問題嗎?引導學生獨立證明:易知,B1C1∥B2C2∥B3C3……,AB1C1∽AB2C2∽AB3C3∽……,
形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值.
通過引導,使學生自己獨立掌握了重點,達到知識教學目標,同時培養學生能力,進行了德育滲透.
而前面導課中動手實驗的設計,實際上為突破難點而設計.這一設計同時起到培養學生思維能力的作用.
練習題為 作了孕伏同時使學生知道任意銳角的對邊與斜邊的比值都能求出來.
(四)總結與擴展
1.引導學生作知識總結:本節課在復習勾股定理及含30°角直角三角形的性質基礎上,通過動手實驗、證明,我們發現,只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的.
教師可適當補充:本節課經過同學們自己動手實驗,大膽猜測和積極思考,我們發現了一個新的結論,相信大家的邏輯思維能力又有所提高,希望大家發揚這種創新精神,變被動學知識為主動發現問題,培養自己的創新意識.
2.擴展:當銳角為30°時,它的對邊與斜邊比值我們知道.今天我們又發現,銳角任意時,它的對邊與斜邊的比值也是固定的.如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個比值很重要,下節課我們就著重研究這個“比值”,有興趣的同學可以提前預習一下.通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發了學生的興趣.
四、布置作業
本節課內容較少,而且是為正、余弦概念打基礎的,因此課后應要求學生預習正余弦概念.
五、板書設計
2020人教版九年級數學教案:函數教學目標:
1、進一步理解函數的概念,能從簡單的實際事例中,抽象出函數關系,列出函數解析式;
2、使學生分清常量與變量,并能確定自變量的取值范圍.
3、會求函數值,并體會自變量與函數值間的對應關系.
4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量的取值范圍的求法.
5、通過函數的教學使學生體會到事物是相互聯系的.是有規律地運動變化著的.
教學重點:了解函數的意義,會求自變量的取值范圍及求函數值.
教學難點:函數概念的抽象性.
教學過程:
(一)引入新課:
上一節課我們講了函數的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有的值與它對應,那么就說x是自變量,y是x的函數.
生活中有很多實例反映了函數關系,你能舉出一個,并指出式中的自變量與函數嗎?
1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數n(個)的關系.
2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數n(個)與單價(a)元的關系.
解:1、y=30n
y是函數,n是自變量
2、,n是函數,a是自變量.
(二)講授新課
剛才所舉例子中的函數,都是利用數學式子即解析式表示的.這種用數學式子表示函數時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數n必須是正整數.
例1、求下列函數中自變量x的取值范圍.
(1)
(2)
(3)
(4)
(5)
(6)
分析:在(1)、(2)中,x取任意實數, 與 都有意義.
(3)小題的 是一個分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .
同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .
第(5)小題, 是二次根式,二次根式成立的條件是被開方數大于、等于零.的被開方數是 .
同理,第(6)小題 也是二次根式, 是被開方數,
.
解:(1)全體實數
(2)全體實數
(3)
(4) 且
(5)
(6)
小結:從上面的例題中可以看出函數的解析式是整數時,自變量可取全體實數;函數的解析式是分式時,自變量的取值應使分母不為零;函數的解析式是二次根式時,自變量的取值應使被開方數大于、等于零.
注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成 或.在解一元二次方程時,方程的兩根用“或者”聯接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯系日常生活講清“且”與“或”.說明這里 與是并且的關系.即2與-1這兩個值x都不能取.
例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元.
(1)若設一般車停放的輛次數為x,總的保管費收入為y元,試寫出y關于x的函數關系式;
(2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數的范圍.
解:(1)
(x是正整數,
(2)若變速車的輛次不小于25%,但不大于40%,
則
收入在1225元至1330元之間
總結:對于反映實際問題的函數關系,應使得實際問題有意義.這樣,就要求聯系實際,具體問題具體分析.
對于函數 ,當自變量 時,相應的函數y的值是 .60叫做這個函數當 時的函數值.
例3、求下列函數當 時的函數值:
(1)
(2)
(3)
(4)
解:1)當 時,
(2)當 時,
(3)當 時,
(4)當 時,
注:本例既鍛煉了學生的計算能力,又創設了情境,讓學生體會對于x的每一個值,y都有確定的值與之對應.以此加深對函數的理解.
(二)小結:
這節課,我們進一步地研究了有關函數的概念.在研究函數關系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并能求出其相應的函數值.另外,對于反映實際問題的函數關系,要具體問題具體分析.
人教版九年級數學上冊教案:直接開平方法
理解一元二次方程“降次”——轉化的數學思想,并能應用它解決一些具體問題.
提出問題,列出缺一次項的一元二次方程ax2+c=0,根據平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.
重點
運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次——轉化的數學思想.
難點
通過根據平方根的意義解形如x2=n的方程,將知識遷移到根據平方根的意義解形如(x+m)2=n(n≥0)的方程.
一、復習引入
學生活動:請同學們完成下列各題.
問題1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根據完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉化成一次?怎樣降次?以前學過哪些降次的方法?
二、探索新知
上面我們已經講了x2=9,根據平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?
(學生分組討論)
老師點評:回答是肯定的,把2t+1變為上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接開平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的兩根x1=-3+2,x2=-3-2
解:略.
例2 市政府計劃2年內將人均住房面積由現在的10 m2提高到14.4 m2,求每年人均住房面積增長率.
分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2
解:設每年人均住房面積增長率為x,
則:10(1+x)2=14.4
(1+x)2=1.44
直接開平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.
所以,每年人均住房面積增長率應為20%.
(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么?
共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.我們把這種思想稱為“降次轉化思想”.
三、鞏固練習
教材第6頁 練習.
四、課堂小結
本節課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉化之目的.若p
初中數學課堂監控存在的問題
作為教師,都想把自己的課上得重點突出、環環相扣、聲情并茂、和諧高效,如風和日麗般溫暖,如行云流水般灑脫。但從一線教師和教研員的長期實踐中了解到:有的課堂教學設計簡單、方法單一,教學效果可想而知;有的課堂教學設計面面俱到,完成任務時間不夠用。怎么辦?急匆匆趕任務,被形象地稱為“快三步”;還有一種就是慢慢來,反正一節課也不閑著,被形象地稱為“慢四步”;此外,還有面對課堂不敢撒手的“嚴格控制型”;敢于撒手但收不回來的“失去控制型”;等等。初中數學課堂監控存在的問題有以下幾種形態:
師生角色錯位,無從監控 教師對學生的主體地位缺乏認識,把本該學生解決的問題自己解決,不能站在學生的角度去看問題,而是站在執教者的角度去描述。方法單一,裸地把知識點搬到學生面前,速度快,省時間,但很多時候做的都是無用功……這種簡單地把三尺講臺當成表演的舞臺,教師是絕對的主角,學生是純粹的觀眾,教師和學生角色錯位,課堂教學監控無從談起。
目標過多重點分散,難以監控 有些教師在確定教學目標時,一味追求面面俱到,想在一節課中解決自己認為的一切問題,眉毛胡子一把抓,整堂課仿佛處處是重點和難點,平均使用力量,往往最后會失去重點。當堂的教學任務不能完成,反而帶領學生走了許多“彎路”。這樣教學的結果自然是教師累,學生累,效率低。
“快三慢四”節奏混亂,失去監控 初中數學課堂教學任務比小學重,剛進入初中的學生一下子難以適應,需要教師適時訓練、及時調控,逐步提高學生完成任務的速度。有的老師急趕任務、不停催促,只要部分優等生完成,就抓緊時間進入下一環節,有的教師依然保持小學時的慢節奏。這種“快三慢四”的混亂節奏,導致課堂失去監控。
課堂教學監控能力與問題分析
教師的課堂教學監控能力具有生長性、階段性、發展性,它們交互依存,不同的生長階段、不同的發展需要所指向的內容和形態也不同。成熟的數學教師的課堂教學監控大都經歷三個階段:
①初登講臺時,懷著無限熱情與自信,在自己洋洋灑灑、慷慨激昂的“說教”中,僅用一二十分鐘就把一節課的教學內容全盤“端”了出來,而學生卻以驚愕、困頓的表情聽得云里霧里,剩余的時間不是咬著筆桿遲遲寫不出解題步驟,就是錯題連篇。
②一段經歷之后,覺得一節課的重點、難點確實很多,要爭取抓好、抓牢,生怕舊知識點沒回顧到,又擔心新知識點漏掉了,還想在有限的45分鐘時間里多加料,讓學生“吃得多、吃得好”。所以,課堂教學面面俱到,完成任務時間不夠用,效果難以如意。
③追求課堂教學的本源,真正把課堂還給學生,發揮好教師的主導作用,和諧安排教學程序與時間。課堂中,有精彩恰當的情景導入、銜接緊密的教學環節、清晰透徹的重難點分析、溫和得體的課堂評價、提綱挈領的總結、整齊美觀的板書等。整節課,有學生的搶答聲,有教師的鼓勵和稱贊聲,有小組激烈的討論聲,還有學生精彩迭出的解惑聲。課堂有序進行,學生學得興致盎然,教師教得得心應手。整節課下來,學生有學有練,教學效率明顯提高。
研究表明:在課堂教學監控方面,位于第一階段的大多是初出茅廬的青年教師,經過教案指導、聽課指導、活動引導,課堂教學監控能力迅速提升,青年教師快速成長;位于第二階段的超過50%,而且不僅是青年教師,也有相當數量的中老年教師,課堂教學監控能力提升速度放慢,而且呈現不穩定狀態;始終保持在第三階段的是教師隊伍中的佼佼者,約占30%,其課堂教學監控呈現良好的穩定性和發展性。
針對課堂監控存在的問題,開展主體性教研活動,充分發揮區域骨干教師的作用,群策群力共同研討制定策略,并針對性地開展“同說一節課”活動,重點說課堂監控策略;“同上一節課”比賽,通過廣泛交流研討,共同針對問題,制定數學課堂監控的矯治策略。
課前監控
課前監控是指課前的計劃與準備。凡事預則立,不預則廢,備好課是上好課的基礎。課堂教學是一個有目標的活動,加強教學的計劃性,有利于教師對自身的監控。
明確目標,有的放矢 一節課的學習目標是突破重難點。重難點要定位準確,不宜過多。為了避免教師對目標制定的盲目性,應發揮集體優勢,實行學科組集體備課,共同制定學生的學習目標?!督舛淮畏匠探M》的重難點是如何將二元一次方程組轉化為一元一次方程;《解一元二次方程》的重難點是如何將一元二次方程轉化為一元一次方程。突破“轉化方法”是學習的重難點,至于轉化后的一元一次方程的解決方法已經不是同一節課的重難點,不能平均使用力量。將“未知”轉化為“已知”的過程和方法是重難點,圍繞重難點設計教學環節,做到有的放矢。
安排合理,彰顯個性 學科組集體備課,集中大家智慧合理安排教學環節固然好,但每個數學教師在做課前準備時必須進行二次創作。時下流行的各種模式教學要因課而異、因人而異,數學概念課、習題課、實`課等不同的課型有不同的特點,每個班級的學生情況不同,每個教師的教學風格不同,現成的“導學案或教案”可能無法取得良好的效果?!敖虒W有法,教無定法”要求教師既要遵循教學規律,又要發揚自身的特色教育,體現個人的風格與特點。
預設充分,留有余地 結合學生實際,針對每個環節進行合理的內容安排、時間分配,讓整節課有詳有略,層次分明,張弛有度。教師在教學方案設計中應充分預設可能的生成,允許充分預設的失敗,不希冀無預設的成功。教師要科學安排教學程序,為學生的積極參與預留較為寬松的時間,讓學生盡可能展示學習的動態生成。
課堂監控
運用觀察法監控自主學習 自主學習是新課標倡導的主要學習方法,初中生已有較強的自主學習能力,教師在教學中要為學生自主學習提供引導,突出學生學什么?怎么學?教師在充分了解教材組織結構以及教學重點、難點和學生知識水平基礎上,精心準備自主學習的內容,明確自主學習的要求、時間及任務。在學生自主學習過程中,教師要運用觀察法監控,要看學生自主學習完成的情況,盡量不要干涉學生的學習活動,放手讓學生獨立自主完成任務。由于非智力因素等原因,個別學生難免會出現發呆、做小動作、交頭接耳等行為,針對這些個別情況,教師正確的做法是用目光暗示他,走近他并輕聲提醒,使其盡快進入自主學習中來。對提前完成任務的學生,教師要認真檢查,確定知識掌握的情況,以便安排后續教學。大部分學生完成后,教師再引導學生將自己思考的過程及結論有序完整地展示,供大家評議。
運用傾聽法監控合作學習 合作學習是培養學生主動探究、團結協作、勇于創新的重要途徑。由于數學學科具有的抽象性、概括性、規范性、嚴謹性、綜合性,在自主學習的基礎上進行合作學習才是高效的。因為數學問題的解決需要深度思維,學生對合作學習的目標要清晰,對要解決的問題有自己初步的認識,合作中需要通過交流獲取信息和靈感。合作學習過程中,教師要聽學生合作學習的真話。根據合作內容的需要采用不同的合作學習形式,調動學生的積極性。教師要清醒地認識到合作學習并不是學生自己的事,教師應和學生一塊參與到學習中來,在課桌間巡視,仔細傾聽學生的討論,關注他們解決問題的進展,捕捉他們思維的火花,適時地參加到熱烈的討論中來,引導他們思考、分析、探究,輔導其突破難關,及時發現典型錯誤,為講評做準備。
和諧節奏容量有效監控課堂 研究發現:初中生學習的注意力在一節課45分鐘里分段變化:①開頭4分鐘,注意力不夠集中;②第5分鐘至15分鐘,注意力逐步集中;③第16分鐘至20分鐘,有些疲勞,注意力較為分散;④第21分鐘至40分鐘,注意力集中;⑤最后5分鐘,疲勞,注意力分散。依據以上變化規律監控課堂教學節奏。在一節課的教學過程中,好的開始就成功了一半。開頭幾分鐘,教師結合學生的心理特點,注意創設情境,特別是教育技術發展的新時代,要善于運用技術進行情景教學,引發學生的探究興趣引入新課,逐步集中起學生的注意力;第二階段,要通過對新知識的探究加強學生學習的緊張度,啟發學生提出問題、思考問題、解決問題,形成新知;第三階段是疲勞區,要適當減輕學生的負擔,把節奏放慢一點,給學生適當的緩沖,利用基礎練習、變異訓練、新知辨析,讓學生輕松渡過;一節課里的黃金時段是第四階段,要調控好學生的注意力,合理利用這段時間,對于學生自主探究和小組合作難于解決的問題,教師要善于跟進指導,對學生的疑難問題,教師要精講多練、舉一反三,加快、加緊此段的教學節奏,通過生生互動、師生互動達到學習的更高層次;最后幾分鐘,節奏自然放慢,教師引導學生認真總結,對學到的內容進行歸納、梳理成串、積極反思、達到內化、提升能力,深入體會數學思想方法,從而引發學生知識的拓展與延伸,讓一節課愉快地結束。
運用課堂評價監控教學過程 教學藝術的本質不在于傳授的本領,而在于激勵、喚醒和鼓舞。教學監控把課堂評價作為一節課的主線,貫穿于課堂教學之中,是教師自我監控的體現,展示教師的個人魅力和教育“才華”。教師的一顰一笑、舉手投足、幽默機智、靈活應變、批評幫助、鼓勵贊賞,無不激勵學生繼續努力,以最佳的狀態投入學習。
借助教育技術有效監控教學 隨著現代教育技術的高速發展,多媒體教室、錄播教室的建設促使教師借助教育技術有效監控教學。在初中數學課堂教學中,借助教育技術的互動性,可以加強師生交流、生生交流,能有效地促進和幫助學生發現并提出有探究價值的數學問題,進一步培養學生分析問題和解決問題的能力,從而揭示數學的本質。此外,如何面對學生的大膽質疑,給教師提出了新的挑戰。數學教師要進行深入研究和探索,不斷完善應對多變的數學課堂的方法,使課堂教學監控的實踐與理論研究交互影響,互相促進。
課后監控
教師課堂教學監控能力的提升,取決于自我反思和同伴互助;而借助多媒體技術監控課堂教學的全過程,則更有利于自我反思和同伴互助。有些教師源于對自己課堂的認知,往往對別人指出自己的問題不以為然,覺得自己不存在這樣的問題;只有觀看自己的教學過程,才能夠接受別人的意見和建議,主動地改進自己的教育教學行為。因此,廣大一線教師應當充分利用新技術進行課堂教學觀察,發現自己課堂上對學生的行為沒有監控到位的盲區,從而進行有效的教學監控,不斷豐滿教育教學才A,使數學課堂更加開放,充滿活躍、靈動、多變和精彩。
參考文獻
[1]林崇德.教育的智慧[M].北京:開明出版社,1999.
[2]張向葵,吳曉義.課堂教學監控[M].北京:人民教育出版社,2006.
【關鍵詞】初中數學 思想方法
九年義務教育全日制初級中學數學《新課程標準》中指出:教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。
目前初中階段,主要數學思想方法有:數形結合的思想、分類討論的思想、整體思想、化歸的思想、轉化思想、歸納思想、類比的思想、函數的思想、辯證思想、、方程與函數的思想方法等。
新課程把數學思想、方法作為基礎知識的重要組成部分,在數學《新課程標準》中明確提出來,這不僅是課標體現義務教育性質的重要表現,也是對學生實施創新教育、培訓創新思維的重要保證。新教材內容的編寫也著重突出了數學思想和方法。同時,在教師教學參考書中提示教師隨時注意滲透基本數學思想和方法,為教師進行數學思想方法的教學提供了方便。
下面就初中思想方法的教學談幾點淺見。
一、在數學概念的建立過程中,滲透數學思想方法
數學概念的建立過程主要表現為概念的形成和概念的同化過程,前者是以直接經驗為基礎的,通過對具體事例分析、抽象、概括出他們的本質屬性,從而形成數學概念;后者是以間接經驗為基礎,是用已經學過的概念去學習新的概念。
在初中數學中,概念的形成和同化的過程,滲透了許多的數學思想方法,教師要在教學中,從概念的引入、理解、深化和應用等各個階段,適時適度地滲透數學思想方法。
如:在講解絕對值概念時,可以通過一對互為相反數(如5和-5),讓學生在數軸上表示出來(即指出對應的兩點表示5和-5),通過這兩點到原點的距離相等,使學生對絕對值的概念有個感性認識。進而用字母表示數,使學生對絕對值概念的認識上升到理性階段,從而可以概括出絕對值的概念。在整個過程中,滲透了對應的思想,數形結合的思想和由具體到抽象的概括的方法。如果要深層次從一個數的性質角度考慮就可得到:
二、在法則、公式、定理的建立和推導過程中,體現數學思想方法
數學課本中展現在我們面前的法則、公式和定理都是經過整理而成的精煉的結論,隱去了科學家發現和推導的整個思維過程。如果教師講授時著意體現出法則、公式、定理的發現和推導過程所反映的數學思想,將有利于學生對法則、公式和定理的理解,優化學生所學知識的組織方式,發展學生數學思維,提高解決問題的能力。
例如:在講授有理數減法法則和除法法則時,通過對“減去一個數,等于加上這個數的相反數”;“除以一個數等于乘以這個數的倒數”的講解,使學生從中意識到,有理數減法可以以相反數為媒介轉化為加法;除法可以以倒數為媒介轉化為乘法。這一個轉化過程充分體現了化歸思想和辯證統一思想。
在講解圓周角定理證明時,啟發學生指出圓心與圓周角的所有可能的位置關系。學生不難發現他們的位置關系有三種:①圓心在圓周角一邊上;②圓心在圓周角的內部;③圓心在圓周角的外部。因此,要證明圓周角定理必須要分這三種情況進行討論。這就體現出分類的思想方法。
三、在解題教學中,突出數學思想方法
數學思想方法是以教材中數學素材為載體,它貫穿于問題的發現和解決的全過程。教材中的例題不僅具有典型型和代表性,而且還隱含著豐富的數學思想方法。在初中數學中,概念的形成和同化的過程,滲透了許多的數學思想方法,教師要在教學中,從概念的引入、理解、深化和應用等各個階段,適時適度地滲透數學思想方法。
例1 解不等式3(1-x)﹤2(x+9),并把它的解集在數軸上表示出來。
教師在講解本例時,可先從一元一次方程入手,將不等式的解法與方程進行對比,找出它們在解法上的異同點。
解方程:3(1-X)=2(x+9),并在數軸上表示它的解。
解:去括號,得:3-3X=2X+18
移項,得:-3x-2x=18-3;合并同類項,得:-5X=15;
系數化成1,得,x=-3(如下圖)。
解不等式3(1-x)﹤2(x+9),并把它的解集在數軸上表示出來。
解:去括號,得:3-3X
這種講法突出了類比思想,通過類比不僅使學生認識到解一元一次不等式和解一元一次方程的一般步驟是類似的,而且突出了當不等式兩邊都乘以(或除以)同一負數時,不等號方向要改變的這一不同點,從而加深了學生對不等式解法的理解。
總之,數學教材中蘊含著極其豐富的數學思想方法。作為一名數學教師在教學中應站在方法論的角度,從每篇教案的精心設計到課堂教學的各個環節都要有計劃,有步驟地安排好數學思想方法的教學。在指導學生解題時應著重加強數學思想方法的指導。這樣做,不僅可以避免“題海戰”,減輕學生學習負擔,達到提高數學教學質量的近期目標,而且對于全面提高學生數學素質具有長遠意義。
1.引導性材料要具有現實性。例如,在“一元一次方程的應用”一節中,讓學生親自買一件商品,使學生體會商品的進價、售價、利潤、利潤率的現實意義。2.引導性材料要具有可變性??勺冃跃褪遣牧峡梢宰兓霾煌男问?,或者有不同的規律。例如,在學習“二元一次方程組的應用”時,“某同學到超市買了甲、乙兩種本共10個,問甲、乙各買本多少個?”在這個材料中,甲種本的數量可以是1到9的任意一個整數,具有可變性,引導學生如何再添加什么條件,就可以確定兩種本的數量,在這里體現了創新和開放,發揮了學生的主動性。3.引導性材料要具有科學性和教育性??茖W性要求材料的嚴謹,教育性要求材料的人文含量要多。例如“一元一次不等式”中的“讀一讀———工資、薪金收入與納稅”,讓學生增加了社會知識,滲透了德育教育。4.引導性材料要適合學生的年齡、認知及心理特點。如果教師不顧學生的這些特點,一味按照數學學科的體系進行教學,學習的效果不會理想。例如,在學習“二元一次方程組的應用”時,如果利用飛機的飛行速度、順風飛行、逆風飛行,學生會感到枯燥乏味;如果利用騎車的速度、以及逆風行駛、順風行駛,并讓學生課前親自感受,就會加深學生對知識的理解,又培養了學生的學習興趣。
二、應用新型有趣的課堂教學方式
(一)創建輕松愉快的學習環境
教師在教學中的主導作用就是為每一個學生創設形形的舞臺,營造一種師生之間和諧、平等、民主交往的良好數學課堂氛圍,促使學生愉快地學習數學,激發學生對數學問題肯想、敢想的情感。對學生中具有獨特創新想法要特別呵護、啟發、引導,不輕易否定,切實保護學生“想”的積極性和自信心。例如,在教學“數軸”一課時,我利用直觀性教學原理,由三名學生到講臺來表演,(三人站在同一直線上),其中一人表示原點,另外兩人左右移動,表示有理數的加減。這樣的教學方式可以化抽象的數學概念為具體形象的表達,學生容易接受,而且給學生提供了參與教學活動的機會,激發了學習興趣。
(二)適時啟發點撥
在數學教學的過程中,教學的成效不但取決于教師對教材居高臨下的認識水平,深入淺出的講解水平,更取決于教師把教材、教案這些靜態知識轉化為動態信息傳遞給學生的啟導水平。教師要根據學生的年齡特點和認知發展水平,改變教學內容的呈現方式和學生的學習方式,把適合教師講解的內容盡可能變成適合學生探討研究問題的素材。要盡可能給學生多一點思考的時間,多一點活動的余地,多一點表現自己的機會,使學生成為數學學習的主人,這樣才能促使學生逐步從“學會”到“會學”,最后達到“好學”的境界。
三、創新教學中的小結
教學小結是教師和學生雙方在完成一個學習內容或活動時,對知識及其他方面進行歸納總結,使學生對所學的知識納入知識系統,形成數學文化的行為方式。開放性的小結,可以留下問題供學生去思考,鼓勵學生繼續探索,培養學生發散思維能力和數學的探究能力,形成良好的學習品質,實現知識的同化。
(一)學生談學習體會
1.從學習知識的角度,概括本節課的知識結構,強調概念,總結定理、公式及解題的關鍵。如我在講解《直線、射線、線段》一課時,鼓勵學生自己進行小結,結果學生積極踴躍地總結,準確概括出了本節課的三個概念、一個公理。2.從學習的數學思想方法角度,學生總結分析自己的思維過程和解決問題所體現的數學方法、數學思想。如在《數軸》一課中的數形結合思想,讓學生形象地理解了數軸的定義,以及數軸上的點與實數的關系是一一對應的。3.從學習的方法角度,學生總結學習過程中需要注意的問題、分析問題中的常見形式、幾何圖形中的常見輔助線等等。如在《三角形》的學習時,學生能總結出已知角平分線,應做出角平分線上的點到角兩邊的距離,以及“遇中線,加倍延”等等。4.從學習的感受和文化內涵角度,學習的感受就是處理問題的方法,解決問題的策略及在實際生活中的應用,體現的數學建模。如在學習《一次函數》時,學生能夠熟練地利用待定系數法列出方程組,從而求出函數解析式。
(二)教師教學小結的層次要求。
教學目的
1.使學生理解分式的意義。
2.會求使分式有意義的條件。
教學分析
重點:分式的意義及其基本性質。
難點:分式的變號法則。
教學過程
一、復習
1、引言:我們已經學過了整式,知道可用整式表示某些數量關系;學習了整式四則運算,在此基礎上學習了一元一次方程的解法和列方程解應用題,但是有些數量關系,只用整式表示是不夠的。。
2、例題:甲、乙兩人做某種機器零件。已知甲每小時比乙多做6個,甲做90個所用的時間與乙做60個所用的時間相等。求甲、乙每小時各做多少個?。
3、分析:設甲每小時做x個零件,那么乙每小時做(x-6)個。甲做90個所用的時間是90÷x(或)小時,乙做60個的用的時間是[60÷(x-6)](或)小時,根據題意列方程
=
可以看出、都不是整式。列出的方程也不是已學過的方程。學習本章內容就可以正確認識這樣的式子及方程,從而解決問題。
二、新授
1.分式
在算術里,兩個數相除可以表示用分數的形式。分數中的分子相當于被除數,分數中的分母相當于除數。因為零不能做除數,所以分數中的分母不能是零。
在代數里,整式的除法也有類似的表示。如前面的例題中,(90÷x)小時可表示成小時,[60÷(x-6)]小時可表示成小時。
又如n公頃麥田共收小麥m噸,平均每公頃產量(m÷n)噸,可用式子噸表示。
再如輪船的靜水速度為a千米/小時。水流速度為b千米/小時,輪船在逆流中航行s千米所需時間[s÷(a-b)]小時,可用式子小時表示。
、、、
的分母中都含有字母。
一般地,用A、B表示兩個整式,A÷B可以表示成的形式。如果B中含有字母,式子叫做分式。基中A叫做分式的分子,B叫做分式的分母??梢姡狭懈魇蕉际欠质?。
由分式的意義可以知道:
(1)分式是兩個整式的商。其中分子是被除式,分母是除式。在這里分數線可理解為除號,還含有括號的作用。
(2)分式的分子可以含字母,也可以不含字母,但分母必須含字母。式子、、都不是分式,因為它們的分母都沒有字母。
(3)在分式里,分母代數式的值隨式中字字母取值的不同而變化。字母所取的值有可能使分母為零。因為分式的分母相當于整式除法的除式,所以分母如果是零,則分式沒有意義。因此在分式中,分母的值不能是零,例如在里,x≠0;在里,a≠b。
例1當x取什么值時,下列分式有意義?
(1);(2)。
解:(1)由x-2≠0得x≠2,即當x≠2時,分式有意義。
(2)由4x+1≠0得x≠時,分式有意義。
例2:當x是什么數時,分式的值是零?
解:由分子x+2=0,得x=-2。而當x=-2時,分母2x-5=-4-5≠0,
所以當x=-2時,分式的值是零。
問題:(1)分式的值為零就是分式沒有意義嗎?
(2)只要分子的值是零,分式的值就是零嗎?以為例回答此題。
三、練習
練習:P60中練習1,2,3,4。
四、小結
1、本課學習了什么是分式。
2、本課還學習了使分式有意義的條件及使分式為0的未知數值的求法。
3、要特別注意分式中作為分母的代數式的值不得為零的教學。在分數里,分數的分母是一個具體的數,是否為零一目了然;而在分式里,要明確其是否有意義,就必須分析,討論分母中所含字母不能取哪些值,以避免分母的代數式的值為零。
五、作業
一、教材分析
第十一章全等三角形 本章主要學習全等三角形的性質與判定方法,學習應用全等三角形的性質與判定解決實際問題的思維方式。教學重點:全等三角形性質與判定方法及其應用;掌握綜合法證明的格式。教學難點:領會證明的分析思路、學會運用綜合法證明的格式。教學關鍵提示:突出全等三角形的判定。
第十二章軸對稱 本章主要學習軸對稱及其基本性質,同時利用軸對稱變換,探究等腰三角形和正三角形的性質。教學重點:軸對稱的性質與應用,等腰三角形、正三角形的性質與判定。教學難點:軸對稱性質的應用。教學關鍵提示:突出分析問題的思維方式。
第十三章實數 本章通過對平方根、立方根的探究引出無限不循環小數,進而導出無理數的概念,從而把有理數擴展到實數。教學重點:平方根、立方根、無理數和實數的有關概念與性質。教學難點:平方根及其性質;有理數、無理數的區別。教學關鍵提示:從生活實際入手,讓學生經歷無理數的發現過程,從而理解并掌握實數的有關概念與性質。
第十四章一次函數本章主要學習函數及其三種表達方式,學習正比例函數、一次函數的概念、圖象、性質和應用,并從函數的觀點出發再次認識一元一次方程、一元一次不等式及二元一次方程組。教學重點:理解正比例函數、一次函數的概念、圖象和性質。教學難點:培養學生初步形成數形結合的思維模式。教學關鍵提示:應用變化與對應的思想分析函數問題,建立運用函數的數學模型。
第十五章整式的乘除與因式分解 本章主要學習整式的乘除運算和乘法公式,學習對多項式進行因式分解。教學重點:整式的乘除運算以及因式分解。教學難點:對多項式進行因式分解及其思路。教學關鍵提示:引導學生運用類比的思想理解因式分解,并理解因式分解與整式乘法的互逆性。
二、學生情況分析
八年級是初中學習過程中的關鍵時期,學生基礎的好壞,直接影響到將來是否能升學。有少數同學基礎特差,問題較嚴重。要在本期獲得理想成績,老師和學生都要付出努力,查漏補缺,充分發揮學生學習主體作用,注重方法,培養能力。上學年學生期末考試的成績平均分為116分,不及格的學生僅有7人??傮w來看,成績還算不錯。七年級尚未出現兩極分化,絕大多數學生都在認真學習。本學期還要在學生學習習慣的養成上,在學生學習主動性上下大功夫。
三、教學目標
1、知識與技能目標 學生通過探究實際問題,認識全等三角形、軸對稱、實數、一次函數、整式乘除和因式分解,掌握有關規律、概念、性質和定理,并能進行簡單的應用。進一步提高必要的運算技能和作圖技能,提高應用數學語言的應用能力,通過一次函數的學習初步建立數形結合的思維模式。
2、過程與方法目標 掌握提取實際問題中的數學信息的能力,并用有關的代數和幾何知識表達數量之間的相互關系;通過探究全等三角形的判定、軸對稱性質進一步培養學生的識圖能力;通過探究一次函數圖象與性質之間的關系,初步建立數形結合的數學模式;通過對整式乘除和因式分解的探究,培養學生發現規律和總結規律的能力,建立數學類比思想。
3、情感與態度目標 通過對數學知識的探究,進一步認識數學與生活的密切聯系,明確學習數學的意義,并用數學知識去解決實際問題,獲得成功的體驗,樹立學好數學的信心。體會到數學是解決實際問題的重要工具,了解數學對促進社會進步和發展的重要作用。認識數學學習是一個充滿觀察、實踐、探究、歸納、類比、推理和創造性的過程。養成獨立思考和合作交流相結合的良好思維品質。了解我國數學家的杰出貢獻,增強民族的自豪感,增強愛國主義。
四、教學設想
1、作好課前準備。認真鉆研教材教法,仔細揣摩教學內容與新課程教學目標,充分考慮教材內容與學生的實際情況,精心設計探究示例,為不同層次的學生設計練習和作業,作好教具準備工作,寫好教案。
2、營造課堂氣氛。利用現代化教學設施和準備好教具,創設良好的教學情境,營造溫馨、和諧的課堂教學氣氛,調動學生學習的積極性和求知欲望,為學生掌握課堂知識打下堅實的基礎。
3、搞好閱卷分析。在條件許可的情況下,盡可能采用當面批改的方式對學生作業進行批閱,指出學生作業中存在的問題,并進行分析、講解,幫助學生解決存在的知識性錯誤。
4、寫好課后小結。課后及時對當堂課的教學情況、學生聽課情況進行小結,總結成功的經驗,找出失敗的原因,并作出分析和改進措施,對于嚴重的問題重新進行定位,制定并實施補救方案。
5、加強課后輔導。優等生要擴展其知識面,提高訓練的難度;中等生要夯實基礎,發展思維,提高分析問題和解決問題的能力,后進生要激發其學習欲望,針對其基礎和學習能力采取針對性的補救措施。
6、成立學習小組。根據班內實際情況進行優等生、中等生與后進生搭配,將全班學生分成多個學習小組,以優輔良,以優促后,實現共同提高的目標。
7、組織單元測試。根據教學進度對每單元教學內容進行測試,做好試卷分析,查找問題。大面積存在的問題在進行試卷講解時要重點進行分析講解,力求透徹。
五、提高教學質量的措施
1、認真學習鉆研新課標,掌握教材;課堂內講授與練習相結合,及時根據反饋信息,掃除學習中的障礙點。
2、認真備課、精心授課,抓緊課堂四十五分鐘,認真上好每一堂課,爭取充分掌握學生動態,努力提高教學效果。
3、抓住關鍵、分散難點、突出重點,在培養學生能力上下功夫;落實每一堂課后輔助,查漏補缺。
4、不斷改進教學方法,提高自身業務素養。積極與其它老師溝通,加強教研教改,提高教學水平。
5、教學中注重自主學習、合作學習、探究學習。
【摘 要】中學數學的教學過程,實質上是運用各種教學理論進行數學知識教學的過程。在這個過程中,必然要升華到數學思想的問題。因為數學思想是人類思想文化寶庫中的瑰寶,是數學的精髓,它對數學教育具有決定性的指導意義?!墩n程標準》把數學思想、方法作為基礎知識的重要組成部分,在大綱中明確提出來,這不僅是大綱體現義務教育性質的重要表現,也是對學生實施創新教育、培訓創新思維的重要保證。
【關鍵詞】初中數學;數學思想;數學方法;實施;滲透
數學思想和方法是數學知識的精髓,又是知識轉化為能力的橋梁。目前初中階段,主要數學思想方法有:數形結合思想、分類討論思想、整體思想、化歸思想、轉化思想、歸納思想、類比思想、函數思想、辯證思想、方程與函數思想方法等。提高學生的數學素質、指導學生學習數學方法,毋用置疑,必須指導學生緊緊抓住掌握數學思想方法是這一數學鏈條中的最重要的一環。
一、鉆研教材,充分挖掘教材中蘊含的數學思想方法
新教材的彈性很大,其選擇的材料是精心組織、合理安排的,表達了一定的思想、方法和目的,但是教師怎樣設計數學情景,學生應形成怎樣的數學思想和方法,教材只做了簡短的說明。 但是基本的數學思想、方法確如靈魂一樣支配著整個教材。 因此,教師在教學過程中一定要研究教材,吃透教材,把教材中蘊含的數學思想、方法精心設計到教案中去。 例如七年級數學第一冊(上)的核心是字母表示數,正是因為有了字母表示數,我們才能總結一般公式和用字母表示定律,才形成了代數學科,這冊教材以字母表示數為主線貫穿始終,列代數式是用字母表示已知數,列方程是用字母表示未知數,同時本章通過求代數式的值滲透了對應的思想,用數軸把數和形緊密聯系起來,通過數形結合來鞏固具有相反意義的量的概念、了解相反數及絕對值、研究有理數加、減法和乘法的意義等,通過有理數、整式概念的教學,滲透了分類思想,教師只有這樣去把握教材的思想體系,才能在教學中合理地滲透數學思想和方法。
二、熟悉課程標準,適時滲透數學方法與數學思想
《數學課程標準》是數學教學之根本,課標中明確對數學方法和思想的教學分為三個層次,即“了解”、“理解”和“會應用”。三個層次由低到高,由簡單到復雜。課標對各種數學思想和方法都提出了具體的要求層次,如要求學生“了解”數學思想有:數形結合的思想、分類的思想、化歸的思想、類比的思想和函數的思想等。要求“理解”和“會應用”的方法有:待定系數法、消元法、降次法、配方法、換元法、圖像法等。在教學中,要認真把握好“了解”、“理解”、“會應用”這三個層次,不能隨意設置難度,否則,學生初次接觸就會感到數學思想、方法抽象難懂,高深莫測,從而導致喪失學習的信心。在初中數學教學中,許多數學思想和方法是一致的,兩者之間很難分割。它們既相輔相成,又相互蘊含。只是方法較具體,而思想則抽象。因此,在初中數學教學中,加強學生對數學方法的理解和應用,把握好滲透的契機,重視數學概念、公式、定理、法則的提出過程,知識的形成、發展過程,解決問題和規律的概括過程,使學生在這些過程中展開思維,從而發展他們的科學精神和創新意識,形成獲取、發展新知識,運用新知識解決問題,以致達到數學思想的境界,使得數學方法和思想相互滲透。
三、不斷再現,逐漸完善
數學思想、方法的形成同樣有一個循序漸進的過程。 只有經過反復訓練才能使學生真正領會。 另外,使學生形成自覺運用數學思想方法的意識,必須建立起學生自我的“數學思想方法系統”,這更需要一個不斷再現、反復訓練、逐漸完善的過程。 比如 ,運用類比的數學方法,在新概念提出、新知識點的講授過程中,可以使學生易于理解和掌握。 學習一次函數的時候,我們可以用乘法公式類比;在學次函數有關性質時,我們可以和一元二次方程的根與系數性質類比。 對一元一次方程和一元一次不等式的解法進行類比,使學生了解它們的聯系與區別,讓學生學會了用類比思想解決問題的方法,在初二學分式及其運算時,學生運用類比的思想由分數的性質和運算可以自主展開對分式的研究。 通過多次重復性的演示,使學生真正理解、掌握類比的數學方法。 小結課、復習課是系統知識,深化知識,使知識內化的最佳課型,也是滲透數學思想方法的最佳時機,教師要充分把握好這一時機,引導學生通過對所學知識系統整理,挖掘提煉解題指導思想,歸納總結上升到思想方法的高度,掌握本質,揭示規律。
總之在初中數學教學的過程中,要熟悉課程標準,把握數學方法和數學思想的三個層次,要善于捕捉時機,善于從具體的問題中提煉出具有普遍指導作用的數學思想方法,不斷向學生滲透、強化,從而上升為數學思想,建構全面完整的數學知識體系,全面提升數學素養,最終有效應用數學知識,形成數學能力。
一、指導思想:
新學期里,本人將積極接受學校分配給自己的各項教育教學任務,以強烈的事業心和責任感投入工作。遵紀守法,遵守學校的規章制度,工作任勞任怨,及時更新教育觀念,實施素質教育,全面提高教育質量,保持嚴謹的工作態度,工作兢兢業業,一絲不茍。熱愛教育、熱愛學校,盡職盡責、教書育人,注意培養學生具有良好的思想品德。認真備課上課,認真批改作業,不敷衍塞責,不傳播有害學生身心健康的思想。
二、素質教育:
我注重推行素質教育,堅決把實施素質教育落實在行動上。關心愛護全體學生,尊重學生的人格,平等、公正對待學生。對學生嚴格要求,耐心教導,不諷刺、挖苦、歧視學生,不體罰或變相體罰學生,保護學生合法權益,促進學生全面、主動、健康發展。
教案是老師講課的依據,教案中不僅寫明教學要求和教學目的,也寫清能力訓練的內容、要求、目的及教學措施等,不僅體現教學大綱的要求,也保證將大綱要求落實到實處。這樣做就能使素質教育在整個教育教學中成為一項必不可少的內容,避免了盲目性,隨意性,增強了計劃性。在編寫教案時注意選擇教育的方法和時機,達到既給學生傳授知識,又開發學生思維能力,促進學生全面發展。在具體的教學過程中,結合所學內容,使學生學習數學知識的同時,也吸取其它方面的“營養”,開闊他們的視野,拓展他們的知識面,培養實事求是和刻苦學習的科學態度。
三、教研工作:
我將積極參加教學研究工作,不斷對教法進行探索和研究。謙虛謹慎、尊重同志,相互學習、相互幫助,維護其他教師在學生中的威信,關心集體,維護學校榮譽,共創文明校風。對于素質教育的理論,進行更加深入的學習。在平時的教學工作中努力工作,不斷向老教師學習,吸取經驗。
四、出勤:
在工作中我一定要做到不遲到、不早退,聽從領導分配,不挑肥揀瘦講價錢,平時團結同志,尊老愛幼,做到互相關心,互相愛護。作為一名教師,我一定自覺遵守學校的各項規章制度,以教師八條師德標準嚴格要求自己,工作嚴肅認真,一絲不茍,決不應付了事,得過且過,以工作事業為重,把個人私心雜念置之度外,按時完成領導交給的各項任務。
五、本期教學內容:北師大版初一數學。
第一章:豐富的圖形世界
第二章:有理數的運算
第三章:字母表示數
第四章:平面圖形及其位置關系
第五章:一元一次方程
第六章:生活中的數據
第七章:可能性
六、本期數學的能力要求
1、基本技能:能夠按照一定的程序與驟進行運算、作圖或畫圖,進行簡單的推理。
2、邏輯思維能力:會觀察、比較、分析、綜合、抽象和概括;會用歸納、演繹和類比進行推理;會準確地闡述自己的思想和觀點,形成良好的思維品質。
3、運算能力:不僅會根據法則、公式等正確地進行運算,而且理解運算的算理,能夠根據題目條件尋求合理、簡捷的運算途徑。
4、分析問題和解決問題的能力:能夠解決實際問題,是指解決帶有實際意義的和相關學科中的數學問題,以及解決生產和日常生活中的實際問題。在解決實際問題中,把實際問題抽象成數學問題,形成用數學的意識。